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Abstract 

Principal component analysis (PCA) is aimed at reducing the dimensionality to find a smaller number of dimensions 
(usually 2 or 3) that exhibit most of the variations present in the data helping to identify the relative importance of 
individual traits on the genotypic diversity of the genotypes. The PCA was computed using seven quantitative traits 
measured from 321 rice genotypes evaluated using augmented RCBD experimental design with a plot area of 2.5m2 
involving 4 rows per plot. The seeds were drilled in rows with a seed rate of 60kg per hectare. NPS (Nitrogen-
Phosphorus-Sulfur) (124 kg per hectare) and Urea (100 kg per hectare) fertilizers were applied. The quantitative traits 
such as days to 50% heading, days to 85% maturity, plant height, panicle length, number of filled and unfilled grains per 
panicle, and 1000 seed weight were collected and subjected to the principal component analysis using XLSTAT 5.03 
statistical software so as to determine the importance of the measured quantitative traits for the genetic diversity of the 
tested rice genotypes. The first three principal components (PC1, PC2 and PC3) were identified with a total cumulative 
variation of 78.90% showing that the genotypes could be grouped at least into three main varied classes. From the 
observed distribution plot, the tested genotypes were almost uniformly distributed in four quadrants pointing the 
presence of genetic diversity among the genotypes. 
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1. Introduction

Rice (Oryza sativa L., 2n = 2x = 24) is the second most widely grown cereal crop and the staple food for more than half 
of the world’s population, providing two-thirds of caloric intake for more than three billion people in Asia and one-third 
of nearly 1.5 billion people in Africa and Latin America [14] and is increasingly important in Ethiopia  and named as the 
"millennium crop" to ensure food security of the country though the crop is relatively a new grain to the country, with 
its introduction only taking place in the 1970s [4]. It is estimated that the country is endowed with about 30 million 
hectares of land, of which 5.6 million hectare is categorized as highly suitable for rice production [8] but the current rice 
production area is only 85,288.87 hectares [7].  

In an effort to improve the productivity of rice and increasing its annual production and area coverage, the Ethiopian 
national rice breeding research program introduced and evaluated germplasms from external sources targeting for 
their environmental adaptability and agronomic performance regarding with their high grain yield, tolerant for biotic 
and abiotic stresses and for other quality traits. Measuring the available genetic diversity is of utmost importance for 
effective evaluation and utilization of germplasms [16] to explore their variability so as to identify desirable agronomic 
attributes [5].  
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Patterns of genetic variation among the germplasms are popularly estimated by multivariate analysis statistical 
approaches such as principal component analysis (PCA). Thus, this research activity was designed to asses and 
determine the extent and pattern of genetic diversity vested on the pool of rice genotypes based on important agronomic 
traits using principal component analysis by reducing the dimensionality and getting smaller number of dimensions 
showing most of the variations present in the measured quantitative data and identifying the importance of individual 
traits on the genotypic diversity of the genotypes.  

2. Material and methods 

2.1 Description of the Experimental site  

The trial was conducted at Pawe agricultural research center experimental station (Figure 1) during 2019/2020 main 
cropping season under rain-fed. The experimental station is located in Pawe district of northwestern Ethiopia at about 

575 km north west of Addis Ababa at a latitude of 11°19'N and longitude of 36°24'E and at an altitude of 1120 masl. The 

area is characterized by hot to warm moist conditions with mean minimum and maximum temperature of 16oc and 
32oc, respectively and has an average annual rainfall of 1587 mm with five to seven months duration [9].  

 

Figure 1 The ArcGIS map projection of the experimental site  

2.2 Plant Materials  

352 lowland rice genotypes with 4 standard checks (Suplement-1) were used. The genotypes were collected and 
introduced from China and Japan in collaboration with IRRI and AfricaRice rice research project.  

2.3 Experimental Design and Procedures 

An Augmented RCBD design was employed with a plot size of 2.5m2 (2.5 m x 1m) each with four rows. A spacing between 
plots and between blocks of 0.5m and 1m was used respectively. An inter-row spacing of 0.25m and a seed rate of 60 
kgha-1 was used.  Inorganic fertilizer (NPS = 124 kgh-1; Urea = 100 kgh-1) was applied. The total NPS fertilizer was applied 
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at planting, whereas the urea was applied with three splits (1/3 at planting, 1/3 at tillering after weeding and 1/3 at the 
crop’s panicle initiation stage). 

2.4 Data Collection and Statistical Analysis 

Data were collected on plot and plant bases following the appropriate growth stage of the crop for each respective 
measured trait. 31 genotypes failed to germinate and hence data were not collected on plots where those missed 
genotypes were planted. Agronomic traits such as days to 50% heading (DH), days to 85% maturity (DM), plant height 
in cm (PH), panicle length in cm (PL), number of filled grains per panicle (NFG), number of unfilled grains per panicle 
(NUFG), and 1000 seed weight in gram (TSW) were considered and subjected to principal component analysis using 
XLSTAT statistical software 5.03 so as to identify the contributing traits to the total genetic variation among the rice 
genotypes on which the principal components having eigen value greater than 1.00 unit were considered as significant. 
Bi-plots were drawn separately based on the first two respective PCA’s to facilitate visualization of the genotypes by 
trait associations. 

3. Results and discussion 

Principal components with an eigen value of less than a unit account for less variance than did the original variable 
(which had a variance of 1.00 unit), and so are of little use and usually such a component should be eliminated so that 
fewer components are dealt with [15]. In addition to the value of eigen values, the scree plot which is a simple line 
segment that shows the fraction of total variance in the data is also a useful visual aid for determining an appropriate 
number of principal components [13]. Therefore, from the principal component analysis of 321 rice genotypes, the first 
three principal components were observed with the eigen values greater than 1.00 unit (Table 1) and the scree plot line 
(Figure 2) after the third principal component was almost flat indicating that the corresponding principal components 
were accounted for lesser amounts of the cumulative variability.  

Table 1 The eigen values of the principal components and their contributions to the variability of 321 rice genotypes  

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 

Eigenvalue 2.61 1.83 1.09 0.54 0.41 0.31 0.22 

Variability (%) 37.25 26.11 15.54 7.74 5.83 4.38 3.15 

Cumulative Variability % 37.25 63.36 78.90 86.64 92.47 96.85 100.00 

Where: PC-principal component, %-Percentage 

Therefore, based on the eigen values of each principal components and the appearance of the scree plot, it has been 
confirmed that the quantitative traits with a higher loading on PC1, PC2 and PC3 contributed the most variability 
observed in the corresponding seven quantitative traits where a great emphasis had been given for those traits having 
a higher loading on the first three principal components.   

The first three principal components (PC1, PC2 and PC3) accounted for a total cumulative variance of 78.90 % where 

the largest variance was contributed by PC1 (37.25%) with an eigen value of 2.61. These principal components 
confirmed the presence of genetic variation among the tested rice genotypes. With a similar fashion, [6] reported the 
first three principal components with eigen values above 1unit and accounted for 65.79% of the total variation among 
39 evaluated rice genotypes. 

It has been also explained that 64% % of the total variability using the first three principal components among 64 rice 
genotypes using seven morphological traits [10]. Unlike this report, [4] reported four principal components with eigen 
values of 6.01, 1.88, 1.77 and 1.54 for PC1, PC2, PC3 and PC4 respectively which were accounted for 80.04% of the total 
variation, and two principal components (PC1 and PC2) for 56% of the total phenotypic and morphological variation 
was also reported by [15] while evaluatig a collection of rice genotypes.  

Taking the eigen vector values of principal component analysis results for seven quantitative traits of the tested 
genotypes (Table 2) into consideration, it had been confirmed that PH, PL and TSW contributes positively to PC1 with 
a contributing coefficient of 0.46, 0.25 and 0.48 respectively whereas DH, DM, NFG and NUFG were a negative 
contributor. Since PL and TSW were directly related to yield, an attention could be given for these quantitative traits 
which were contributing positively for the variability of this component.  The variability on PC3 was positively 
contributed by NFG and NUFG but negatively contributed by the other five quantitative traits. [3] also discussed that 
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the variability on PC1 was positively contributed by PH, PL and TSW, and negatively contributed by DH and DM but 
positively contributed to the variability on PC2. Unlike this report the author reported a positive contribution of DH and 
DM to the observed variability on PC3.  

 

Figure 2 Scree plot for Eigen values and variance explained by the principal component analysis of seven quantitative 
traits of 321 lowland rice genotypes 

Table 2 Principal component analysis and the eigen vectors of seven quantitative traits for 321 lowland rice genotypes 

Variables PC1 PC2 PC3 

DH -0.51 0.12 -0.39 

DM -0.47 0.09 -0.45 

PH 0.46 0.26 -0.31 

PL 0.25 0.50 -0.37 

NFG -0.13 0.65 0.08 

NUFG -0.07 0.49 0.58 

TSW 0.48 -0.05 -0.27 

Where: DH-days to heading, DM-days to maturity PH-plant height, PL-panicle length, NFG-number of filled grains per panicle, NUFG-number of 
unfilled grains per panicle; TSW-1000 seed weight, PC-principal component 

The principal component loadings for the quantitative traits of the tested rice genotypes (Table 3), showed that the total 
variability of PC1 was highly and positively loaded by plant height (0.74), panicle length (0.41) and 1000 seed weight 
(0.77). The variability of PC2 was highly loaded by number of filled grains per panicle (0.88) and panicle length (0.67) 
on which the traits contributed highly and positively on its total variability. Number of unfilled grains per panicle (0.60) 
had a high loading on PC3.  

Similarly, [2] reported a positive loading of plant height (0.33) and panicle length (0.37) for the cumulative variance of  

PC1(29.72%), days to heading (0.59) for the cumulative variance of PC2 (50.63%) and a negative loading of days to 
heading (-0.02), plant height (-0.42) and panicle length (-0.35). In contrast with this study the author also recorded a 
positive loading of days to heading (0.15) and days to maturity (0.21) for PC1 and a negative loading of plant height (-
0.24) and panicle length (-0.11) on PC2, and 1000 seed weight on PC1. In addition, [12] also reported a PC1 positively 
loaded on plant height and grain weight, and a PC2 positively loaded on number of unfilled grains per panicle.  

Taking the results of the trait loadings into consideration, a great attention could be given for the genotypes included in 
PC1 and PC2. But genotypes laid on PC3 may not be considered due to the predicted yield reduction because of a high 
loading by the number of unfilled grains, the least contribution of number of filled grains and a negative contribution of 
1000 seed weight on its total variability (15.54%).  
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Table 3 Principal component loadings of seven quantitative traits of 321 rice genotypes 

Variables PC1 PC2 PC3 

DH -0.82 0.16 -0.41 

DM -0.76 0.12 -0.47 

PH 0.74 0.35 -0.32 

PL 0.41 0.67 -0.38 

NFG -0.21 0.88 0.08 

NUFG -0.11 0.66 0.60 

TSW 0.77 -0.07 -0.29 

Where: DH-days to heading, DM-days to maturity, PH-plant heigh, PL-panicle length, NFG-number of filled grains per panicle, NUFG-number of 
unfilled grains per panicle, TSW-1000 seed weight, PC-principal component. 

The correlation circle (Figure 3) formed with the narrow angles by the vector lengths of days to heading (DH) and days 
to maturity (DM) confirmed that these quantitative traits were positively correlated with each other while correlating 
the first two principal components with the respective quantitative traits. The right angles formed by the vector length 
of number of unfilled grains (NUFG) and plant height (PH) showed that these two traits were highly unrelated to each 
other. 

 

Figure 3 A correlation circle showing a correlation between seven quantitative traits and the principal components of 
321 rice genotypes 

Out of the seven quantitative traits evaluated among the genotypes, it has been clearly showed that days to 50% heading 
(DH), days to 85% maturity (DM), plant height (PH) and 1000 seed weight (TSW) brought a higher contribution to the 
total variability of PC1(25.76%, 22.33%, 20.72% and 22.81% respectively) whereas panicle length (PL), number of filled 
grains per panicle (NFG) but number of unfilled grains per panicle (NUFG) showed a lower contribution (Table 4) to its 
total variability.  

Number of filled grains per panicle (NFG) had a highest contribution (42.26%) to the total variability of PC2 whereas 
1000 seed weight (TSW) was the least contributed trait (0.27%) to this principal component. The total variability 
percentage of PC3 was highly contributed by number of unfilled grains per panicle (33.37%) and days to maturity 
(20.48%). [11] It has been also reported that plant height showed a higher contribution for the total variability of PC1 
(23.35 %). Unlike this study the author reported a negative contribution of panicle length and number of filled grains 
per a panicle to PC2 while studding the genetic diversity of 36 upland rice genotypes in southwestern Ethiopia.   
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Table 4 Contribution of the quantitative traits to each principal component (%) for 321 rice genotypes 

Variables PC1 PC2 PC3 

DH 25.76 1.40 15.12 

DM 22.33 0.80 20.48 

PH 20.72 6.73 9.49 

PL 6.30 24.73 13.44 

NFG 1.64 42.26 0.65 

NUFG 0.44 23.81 33.37 

TSW 22.81 0.27 7.45 

Where: DH-days to heading, DM-days to maturity, PH-plant height, PL-panicle length, NFG-number of filled grains per panicle, NUFG-number of 
unfilled grains per panicle, TSW-thousand seed weight in gram, PC-principal component 

Table 5 The squared cosines of the variables evaluated from 321 rice genotypes 

Variables PC1 PC2 PC3 

DH 0.67 0.03 0.16 

DM 0.58 0.01 0.22 

PH 0.54 0.12 0.10 

PL 0.16 0.45 0.15 

NFG 0.04 0.77 0.01 

NUFG 0.01 0.44 0.36 

TSW 0.59 0.01 0.08 

Where: DH-days to heading, DM-days to maturity, PH-plant height, PL-panicle length, NFG-number of filled grains per panicle, NUFG-number of 
unfilled grains per panicle, TSW-1000 seed weight and PC-principal component 

  

Figure 4 Distribution plot of 321 lowland rice genotypes across the first two components (A) and the corresponding 
seven measured quantitative traits (biplot) across the first two principal components (B) based on PCA 

To clearly identify that which quantitative trait is well linked with each principal component, the squared cosine of each 
trait was considered (Table 5). The greater the squared cosine, the greater the link with the corresponding principal 
components [17]. Hence, days to heading (DH), days to maturity (DM), plant height (PH) and 1000 seed weight (TSW) 
were well linked with PC1 whereas panicle length (PL), number of filled grains per a panicle (NFG) and number of 
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unfilled grains per a panicle (NUFG) were highly linked with PC2, and PC3 had relatively a higher linkage with days to 
maturity (DM) and number of unfilled grains per a panicle (NUFG). 

The distribution pattern of 321 rice genotypes explained by seven different quantitative traits (Figure 4-A and 4-B) 
confirmed that the genotypes were distributed in different coordinates, which clearly showed the presence of a genetic 
diversity among the tested rice genotypes. 

4. Conclusion 

The statistical result that the tested rice genotypes were grouped into different quadrants while computing the 
distribution plot confirms the presence of a genetic diversity among the genotypes and the cumulative variability of the 
first three significant principal components (PC1, PC2 and PC3) is mainly contributed by the number of filled grains per 
a central panicle. The total variability of PC1 is highly contributed by Days to 50% heading, days to 85% maturity, plant 
height, and 1000 seed weight whereas the total variability of PC2 is contributed by number of filled grains a central 
panicle, panicle length, and number of unfilled grains per a central panicle. It is also identified that the total variability 
percentage of PC3 is highly contributed by number of unfilled grains per a central panicle and days to 85% maturity 
while predicting the presence of genetic diversity among the tested rice genotypes. Generally, the total variability of 
each significant principal components contributed by different quantitative traits predicts the presence of a genetic 
diversity among the tested rice genotypes. Thus, it is recommended that an attention should be given for those 
genotypes with a greater value of number of filled grains per panicle, 1000 seed weight but with a lower number of 
unfilled grains per panicle while selecting genotypes for improving the desired traits of the genotypes to be 
implemented in different rice breeding research program. 
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